EXHIBIT A

Project Scoping Form

This scoping form shall be submitted to the Lead Agency to assist in identifying infrastructure improvements that may be required to support traffic from the proposed project.

Project Identification:

Case Number:	
Related Cases:	
SP No.	Moreno Valley Festival Specific Plan (SP No. 205)
EIR No.	
GPA No.	
CZ No.	
Project Name:	Moreno Valley Business Park - Phase II (SPA No. 2)
Project Address:	Southeast Corner of Heacock Street & Ironwood Avenue
Project Opening	
Year:	2023
Project	220,390 square foot warehouse; where 154,270 SF will be evaluated assuming
Description:	warehousing, 33,060 SF of manufacturing use, and 33,060 SF of high-cube
	cold storage warehouse use

	Consultant:	Developer:	(Representative)		
Name:	Urban Crossroads - Charlene So	Applied Planning	- Ross Geller		
Address:	1133 Camelback St, #8329	11762 De Palma Rd, 1-C 310			
	Newport Beach, CA 92658	Corona, CA 92883			
Telephone:	949-861-0177				
Email:	cso@urbanxroads.com				

Trip Generation Information:

Trip Generation Data Source: ITE Trip Generation Manual, 11th Edition (2021)

The City of Moreno Valley reserves the right to use, share, and reproduce the information including, but not limited to, traffic counts, exhibits, and surveys provided in all submitted traffic studies and VMT assessment.

City of Moreno Valley Traffic Impact Preparation Guide June 2020

Current General Plan Land Use:

Commercial

Proposed General Plan Land Use:

Business Park/Light Industrial

Current Zoning:

SP No. 205 (Retail Commercial)

Proposed Zoning:

SP No. 205 (Mix of Uses)

	Existing Trip Generation			Proposed T	on (PCE)	
	In	Out	Total	In	Out	Total
AM Trips				41	17	58
PM Trips				23	42	65
L	L	L		L	I	L

Trip Internalization:	Yes	\checkmark	No	(_% Trip Discount)
Pass-By Allowance:	Yes	\checkmark	No	(_% Trip Discount)

Potential Screening Checks

Is your project screened from specific analyses (see Page 3 of the guidelines related to LOS assessment and Pages 22-23 for VMT screening criteria).

Is the project screened from LOS assessment?

🗸 Yes

🗌 No

LOS screening justification (see Page 3 of the guidelines): Project generates less than 100 peak hour trips (both actual vehicles and PCE)	

City of Moreno Valley Traffic Impact Preparation Guide June 2020

Is the project screened from VMT assessment?	Yes	V No
VMT screening justification (see Pages 22-23 of the g	uidelines):	

Level of Service Scoping

• Proposed Trip Distribution (Attach Graphic for Detailed Distribution): See attached memo

North		South		East		West	
N/A	%	N/A	%	N/A	%	N/A	%

Link level of service and data collection:

_____ will be required

X will not be required

- Attach list of study intersections (and roadway segments if applicable) Not Applicable
- Attach site plan See attched
- Other specific items to be addressed:
 - o Site access
 - o On-site circulation
 - o Parking
 - o Consistency with Plans supporting Bikes/Peds/Transit
 - o Other_____
- Date of Traffic Counts Not Applicable
- Attach proposed analysis scenarios (years plus proposed forecasting approach)
- Attach proposed phasing approach (if the project is phased)

VMT Scoping

For projects that are not screened, identify the following: See attached memo

- Travel Demand Forecasting Model Used <u>RIVTAM w/ GPU for cumulative year (unmodified</u>
 Attach WRCOG Screening VMT Assessment output or describe why it is not appropriate for use
- Attach proposed Model Land Use Inputs and Assumed Conversion Factors (attach)

urbanxroads.com

December 14, 2021

Wei Sun City of Moreno Valley 14177 Frederick Street Moreno Valley, CA 92552

SUBJECT: MORENO VALLEY BUSINESS PARK – PHASE II TRIP GENERATION ASSESSMENT AND VMT

Dear Wei Sun:

Urban Crossroads, Inc. is pleased to submit this scoping letter to City of Moreno Valley regarding the proposed Moreno Valley Business Park – Phase II development (**Project**), which is located east of Heacock Street and north of the SR-60 Freeway in the City of Moreno Valley. The purpose of this work effort is to determine whether additional traffic analysis is necessary for the proposed Project based on the City of Moreno Valley's <u>Transportation Impact Analysis Preparation Guide for Vehicles Miles Traveled</u> and Level of Service Assessment (June 2020) (**City's Guidelines**).

PROJECT DESCRIPTION

The proposed Project is to consist of 220,390 square foot industrial building (Building 5) which will be evaluated assuming 154,270 square feet of warehousing use (70% of the overall square footage), 33,060 square feet of manufacturing use (15% of the overall square footage), and 33,060 square feet of high-cube cold storage warehouse use (15% of the overall square footage) for a total of 220,390 square feet of industrial uses. A preliminary site plan for the proposed Project is shown on Exhibit 1. It is anticipated that the Project would be developed in a single phase with an anticipated Opening Year of 2023. As indicated on Exhibit 1, access to the Project site will be provided to Heacock Street via two driveways and Ironwood Avenue via 1 driveway.

Wei Sun City of Moreno Valley December 14, 2021 Page 2 of 8

EXHIBIT 1: PRELIMINARY SITE PLAN

Wei Sun City of Moreno Valley December 14, 2021 Page 3 of 8

TRIP GENERATION

Trip generation represents the amount of traffic that is attracted and produced by a development and is based upon the specific land uses planned for a given project. The trip generation rates shown on Table 1 are based upon information collected by the Institute of Transportation Engineers (ITE) as provided in their <u>Trip Generation Manual</u> (11th Edition, 2021) for the proposed uses.

For purposes of this assessment, the following ITE land use codes and vehicle mixes have been utilized for the purposes of calculating the proposed Project trip generation:

- ITE land use code 140 (Manufacturing) has been used to derive site specific trip generation estimates for up to 33,060 square feet of the proposed Project. A manufacturing facility is an area where the primary activity is the conversion of raw materials or parts into finished products. Size and type of activity may vary substantially from one facility to another. In addition to the actual production of goods, manufacturing facilities generally also have office, warehouse, research, and associated functions. The vehicle mix has been obtained from the ITE's latest <u>Trip Generation Manual</u>. The truck percentages were further broken down by axle type per the following SCAQMD recommended truck mix: 2-Axle = 16.7%; 3-Axle = 20.7%; 4+-Axle = 62.6%.
- ITE land use code 150 (Warehousing) has been used to derive site specific trip generation estimates for up to 154,270 square feet of the proposed Project. A warehouse is primarily devoted to the storage of materials but may also include office and maintenance areas. The vehicle mix has also been obtained from the ITE's latest <u>Trip Generation Manual</u>. The truck percentages were further broken down by axle type per the following SCAQMD recommended truck mix: 2-Axle = 16.7%; 3-Axle = 20.7%; 4+-Axle = 62.6%.
- ITE land use code 157 (High-Cube Cold Storage Warehouse) has been used to derive site specific trip generation estimates for up to 33,060 square feet of the proposed Project. High-cube cold storage warehouses include warehouses characterized by the storage and/or consolidation of manufactured goods (and to a lesser extent, raw materials) prior to their distribution to retail locations or other warehouses. High-cube cold storage warehouses are facilities typified by temperature-controlled environments for frozen food or other perishable products. The High-Cube Cold Storage Warehouse vehicle mix (passenger cars versus trucks) has been obtained from the ITE's latest Trip Generation Manual. The truck percentages were further broken down by axle type per the following SCAQMD recommended truck mix: 2-Axle = 34.7%; 3-Axle = 11.0%; 4+-Axle = 54.3%.

Wei Sun City of Moreno Valley December 14, 2021 Page 4 of 8

		ITE LU	AN	AM Peak Hour		PN			
Land Use ¹	Units ²	Code	In	Out	Total	In	Out	Total	Daily
Actual Vehicle Trip Generation Rates									
Manufacturing ³	TSF	140	0.517	0.163	0.680	0.229	0.511	0.740	4.750
Passenger Cars			0.494	0.156	0.650	0.220	0.490	0.710	4.300
2-Axle Trucks			0.003	0.002	0.005	0.002	0.003	0.005	0.075
3-Axle Trucks			0.003	0.003	0.006	0.003	0.004	0.006	0.093
4+-Axle Trucks			0.011	0.008	0.019	0.008	0.011	0.019	0.282
Warehousing ³	TSF	150	0.131	0.039	0.170	0.050	0.130	0.180	1.710
Passenger Cars			0.116	0.034	0.150	0.042	0.108	0.150	1.110
2-Axle Trucks			0.002	0.001	0.003	0.003	0.002	0.005	0.100
3-Axle Trucks			0.002	0.002	0.004	0.003	0.003	0.006	0.124
4+-Axle Trucks			0.007	0.006	0.013	0.010	0.009	0.019	0.376
High-Cube Cold Storage Warehouse ³	TSF	157	0.085	0.025	0.110	0.034	0.086	0.120	2.120
Passenger Cars			0.062	0.018	0.080	0.025	0.065	0.090	1.665
2-Axle Trucks			0.003	0.007	0.010	0.005	0.005	0.010	0.260
3-Axle Trucks			0.001	0.002	0.003	0.002	0.001	0.003	0.083
4+-Axle Trucks			0.005	0.011	0.016	0.008	0.008	0.016	0.113
Passenger Car Equivalent (PCE) Trip Generation Rates ⁴									
Manufacturing ³	TSF	140	0.517	0.163	0.680	0.229	0.511	0.740	4.750
Passenger Cars			0.494	0.156	0.650	0.220	0.490	0.710	4.300
2-Axle Trucks (PCE = 1.5)			0.005	0.003	0.008	0.003	0.004	0.008	0.113
3-Axle Trucks (PCE = 2.0)			0.006	0.006	0.012	0.005	0.007	0.012	0.186
4+-Axle Trucks (PCE = 3.0)			0.033	0.023	0.056	0.023	0.033	0.056	0.845
Warehousing ³	TSF	150	0.131	0.039	0.170	0.050	0.130	0.180	1.710
Passenger Cars			0.116	0.034	0.150	0.042	0.108	0.150	1.110
2-Axle Trucks (PCE = 1.5)			0.003	0.002	0.005	0.005	0.003	0.008	0.150
3-Axle Trucks (PCE = 2.0)			0.004	0.004	0.008	0.006	0.006	0.012	0.248
4+-Axle Trucks (PCE = 3.0)			0.021	0.017	0.038	0.030	0.026	0.056	1.127
High-Cube Cold Storage Warehouse ³	TSF	157	0.085	0.025	0.110	0.034	0.086	0.120	2.120
Passenger Cars			0.062	0.018	0.080	0.025	0.065	0.090	1.665
2-Axle Trucks (PCE = 1.5)			0.005	0.011	0.016	0.008	0.008	0.016	0.390
3-Axle Trucks (PCE = 2.0)			0.002	0.005	0.007	0.004	0.003	0.007	0.165
4+-Axle Trucks (PCE = 3.0)			0.015	0.034	0.049	0.024	0.025	0.049	0.338

TABLE 1: ITE TRIP GENERATION RATES

¹ Trip Generation & Vehicle Mix Source: Institute of Transportation Engineers (ITE), <u>Trip Generation Manual</u>, Eleventh Edition (2021).

² TSF = thousand square feet

³ Truck Mix: South Coast Air Quality Management District's (SCAQMD) recommended truck mix, by axle type. Normalized % - Without Cold Storage: 16.7% 2-Axle trucks, 20.7% 3-Axle trucks, 62.6% 4-Axle trucks. Normalized % - With Cold Storage: 34.7% 2-Axle trucks, 11.0% 3-Axle trucks, 54.3% 4-Axle trucks.

⁴ PCE factors: 2-axle = 1.5; 3-axle = 2.0; 4+-axle = 3.0.

Wei Sun City of Moreno Valley December 14, 2021 Page 5 of 8

Passenger car equivalent (PCE) factors were applied to the trip generation rates for heavy trucks (large 2-axles, 3-axles, 4+-axles). PCEs allow the typical "real-world" mix of vehicle types to be represented as a single, standardized unit, such as the passenger car, to be used for the purposes of capacity and level of service analyses. The PCE factors are consistent with the recommended PCE factors in the City's Guidelines.

Any operations analyses performed as part of a Traffic Analysis would be required to utilize the PCE trip generation consistent with the City's Guidelines. The trip generation summary illustrating daily and peak hour trip generation estimates for the proposed Project in actual vehicles and PCE are shown on Table 2 and Table 3, respectively. The proposed Project is anticipated to generate 498 two-way trips per day with 49 AM peak hour trips and 52 PM peak hour trips (of which 128 two-way trips per day are associated with trucks with 2 AM peak hour truck trips and 3 PM peak hour truck trips) (see Table 2). Table 3 indicates the Project would generate 676 two-way PCE trips per day with 58 PCE AM peak hour trips and 65 PCE PM peak hour trips.

		AM Peak Hour			PM			
Land Use	Quantity Units ¹	In	Out	Total	In	Out	Total	Daily
Actual Vehicles:								
Manufacturing	33.060 TSF							
Passenger Cars:		16	5	21	7	16	23	142
2-axle Trucks:		0	0	0	0	0	0	2
3-axle Trucks:		0	0	0	0	0	0	4
4+-axle Trucks:		0	0	0	0	0	0	10
Total Truck Trips (Actual Vehicles):		0	0	0	0	0	0	16
Subotal Trips (Actual Vehicles) ²		16	5	21	7	16	23	158
Warehousing	154.270 TSF							
Passenger Cars:		18	5	23	6	17	23	172
2-axle Trucks:		0	0	0	0	0	0	16
3-axle Trucks:		0	0	0	0	0	0	20
4+-axle Trucks:		1	1	2	2	1	3	58
Total Truck Trips (Actual Vehicles):		1	1	2	2	1	3	94
Subotal Trips (Actual Vehicles) ²		19	6	25	8	18	26	266
High-Cube Cold Storage	33.060 TSF							
Passenger Cars:		2	1	3	1	2	3	56
2-axle Trucks:		0	0	0	0	0	0	10
3-axle Trucks:		0	0	0	0	0	0	4
4+-axle Trucks:		0	0	0	0	0	0	4
Total Truck Trips (Actual Vehicles):		0	0	0	0	0	0	18
Subotal Trips (Actual Vehicles) ²		2	1	3	1	2	3	74
Passenger Cars		36	11	47	14	35	49	370
Trucks		1	1	2	2	1	3	128
Project Total Trips (Actual Vehicles) ²		37	12	49	16	36	52	498

TABLE 2: PROJECT TRIP GENERATION SUMMARY (ACTUAL VEHICLES)

¹ TSF = thousand square feet

² Total Trips = Passenger Cars + Truck Trips.

Wei Sun City of Moreno Valley December 14, 2021 Page 6 of 8

		AM Peak Hour			PM			
Land Use	Quantity Units ¹	In	Out	Total	In	Out	Total	Daily
Passenger Car Equivalent (PCE):								
Manufacturing	33.060 TSF							
Passenger Cars:		16	5	21	7	16	23	142
2-axle Trucks:		0	0	0	0	0	0	4
3-axle Trucks:		0	0	0	0	0	0	6
4+-axle Trucks:		1	1	2	1	1	2	28
Total Truck Trips (PCE):		1	1	2	1	1	2	38
Subtotal Trips (PCE) ²		17	6	23	8	17	25	180
Warehousing	154.270 TSF							
Passenger Cars:		18	5	23	6	17	23	172
2-axle Trucks:		0	0	0	1	0	1	24
3-axle Trucks:		1	1	2	1	1	2	38
4+-axle Trucks:		3	3	6	5	4	9	174
Total Truck Trips (PCE):		4	4	8	7	5	12	236
Subtotal Trips (PCE) ²		22	9	31	13	22	35	408
High-Cube Cold Storage	33.060 TSF							
Passenger Cars:		2	1	3	1	2	3	56
2-axle Trucks:		0	0	0	0	0	0	14
3-axle Trucks:		0	0	0	0	0	0	6
4+-axle Trucks:		0	1	1	1	1	2	12
Total Truck Trips (PCE):		0	1	1	1	1	2	32
Subtotal Trips (PCE) ²		2	2	4	2	3	5	88
Passenger Cars		36	11	47	14	35	49	370
Trucks		5	6	11	9	7	16	306
Project Total Trips (PCE) ²		41	17	58	23	42	65	676

TABLE 3: PROJECT TRIP GENERATION SUMMARY (PCE)

¹ TSF = thousand square feet

² Total Trips = Passenger Cars + Truck Trips.

The existing Moreno Valley General Plan land use designation for the site is commercial. Although the maximum allowable floor to area ratio (FAR) is 1.00 for the General Plan Commercial Land Use designation, an FAR of 0.51 has been utilized for the purposes of this assessment. As such, the maximum allowable commercial building square footage for the site has been calculated by multiplying the 0.51 FAR by 9.98 acres and converting acres to square footage (9.98 acres x 43,560 square feet/acre x 0.51 FAR = 220,390 square feet). Table 4 summarizes the trip generation for 220,390 square feet of commercial retail use. As shown on Table 4, the currently approved land use is anticipated to generate 5,384 two-way trips per day with 185 AM peak hour trips and 506 PM peak hour trips (less pass-by trip reductions per the ITE Trip Generation Handbook for the commercial retail use, which is 34% in the PM and daily only).

NERATION SUMMARY
N

		ITE LU	AM Peak Hour			LU AM Peak Hour PM Peak Hour					
Land Use ¹	Units ²	Code	In	Out	Total	In	Out	Total	Daily		
Commercial Retail (>150,000 SF)	TSF	820	0.52	0.32	0.84	1.63	1.77	3.40	37.01		

¹ Trip Generation & Vehicle Mix Source: Institute of Transportation Engineers (ITE), <u>Trip Generation Manual</u>, Eleventh Edition (2021).
 ² TSF = thousand square feet

		AM Peak Hour			PM Peak Hour			
Land Use	Quantity Units ¹	In	Out	Total	In	Out	Total	Daily
						-		
Commercail Retail	220.390 TSF	115	70	185	360	390	750	8,158
Pass-by Reductions:		0	0	0	-122	-122	-244	-2,774
Total Trips		115	70	185	238	268	506	5 <i>,</i> 384

¹ TSF = thousand square feet

Table 5 compares the trip generation for the currently approved Commercial Retail land use and the proposed warehousing Project. For the proposed Project, the comparison conservatively utilizes the PCE trip generation. As shown on Table 5, the proposed Project is anticipated to generate 4,708 fewer two-way trips per day with 127 fewer AM peak hour trips and 441 fewer PM peak hour trips (overall net reduction in trips).

TABLE 5: TRIP GENERATION COMPARISON

		AM Peak Hour			PM Peak Hour			
Land Use	Quantity Units ¹	In	Out	Total	In	Out	Total	Daily
Approved: Commercial Retail	220.390 TSF	115	70	185	238	268	506	5,384
Proposed: Warehousing (in PCE)	220.390 TSF	41	17	58	23	42	65	676
Variance		-74	-53	-127	-215	-226	-441	-4,708

¹ TSF = thousand square feet

CONCLUSION

The traffic study area is to be defined in conformance with the requirements of the City's Guidelines, which state that the requirement to prepare a traffic study will be based upon whether a project is anticipated to generate 100 or more peak hour trips. Based on this criterion, the Project is anticipated to generate fewer than 100 peak hour trips during any peak hour and would contribute fewer than 50 peak hour trips to any off-site study area intersection. As such, additional traffic analysis beyond this trip generation assessment does not appear to be necessary.

Wei Sun City of Moreno Valley December 14, 2021 Page 8 of 8

If you have any questions, please contact me directly at (949) 861-0177.

Respectfully submitted, URBAN CROSSROADS, INC.

Charlene So

Charlene So, PE Associate Principal

Attachments

